H₂O in Herschel high-z galaxies, a new diagnosis of their dense cores

Alain Omont (IAP)

As confirmed by Herschel, submillimeter lines of H_2O are, just after CO, among the strongest submillimeter molecular lines in local and high-z ultra-luminous infrared galaxies (ULIRGs). They provide a completely different diagnosis than CO of their dense, warm cores because of the large electric dipole of H_2O , the high water abundance and their sensitivity to infrared excitation.

I will report on the progress of high-z H_2O line studies in strongly lensed high-z Herschel galaxies from the H-ATLAS survey. High-z H_2O detections with IRAM/PdBI will be presented in 15 objects and compared with Herschel detections in local ULIRGs. We have shown that H_2O is

easily detectable at all redshifts. The H₂O line luminosity increases as $L_{IR}^{-1.2}$, and highexcitation lines (E_{up}/k ~ 300K) remain strong in the majority of the sources. H₂O lines provide thus an important diagnosis in extreme starbust (and possibly AGN) conditions of warm, dense cores/clumps of these galaxies which are often more extreme than local equivalents and are abundant at z ~ 2-4. Modeling H₂O rotational excitation allows us to constrain physical parameters there such as warm dust opacity and temperature and H₂O abundance. Extensions

to observations of related molecular lines such as H_2O^+ will be also presented.