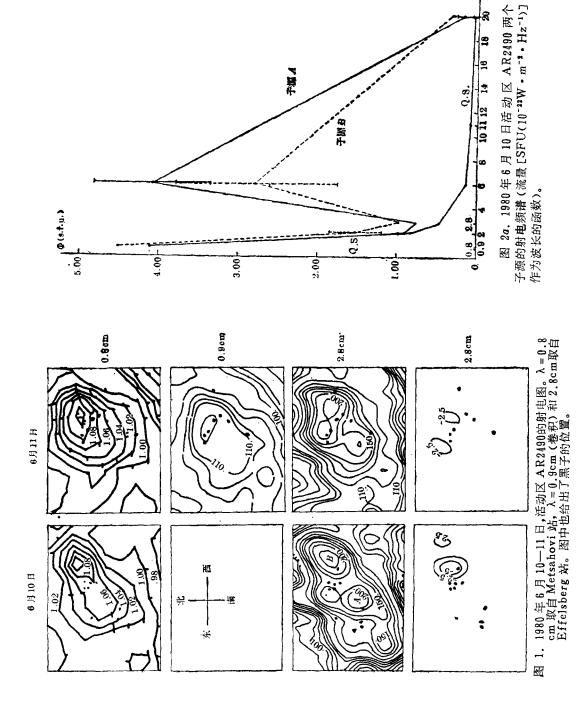
1987年10--12月

太阳活动区 AR2490 的射电研究

1980年6月10—12日,当太阳活动区AR 2490出现强活动性以后,按照国际科联(ICSU)下属的天-地-空五大国际科学组织共同制定的第21周太阳活动峰年国际联合观测A项计划(The SMY-FBS Project),世界一些著名的大型仪器,在射电、光学、X射线到紫外线波段上都进行了观测。这些仪器是,美国甚大阵(VLA)、荷兰 Westerbork综合孔径(WSRT)、Sacramento 峰真空太阳塔的光学观测以及太阳极大使命卫星(SMM)上的X射线多色仪(XRP)和紫外线分光偏振仪(UVSP)两个仪器。取得的观测结果已由 Drago等人在Solar Physics 第80卷(1982)上的"Multiple Wavelength Observations of a Solar Active Region"一文中发表了。

该文的主要结果如下,射电源在 $\lambda=6$ cm 和 20 cm 处呈现两个子源。在 6cm 处,子源A是最强的一个,它悬浮在一群极性相同的小黑子上面,而子源B是躺在 H_{α} 谱斑之上,并同增强的X和 UV 辐射区域相一致。


文章对两个子源的解释 如下:子源 A 在 λ = 6cm 处,不透明度起因于回旋共振(g- τ)吸收。子源 B 被认为只是自由-自由辐射和吸收。由 X 射线观测推算出在 λ = 20cm 处总强度与实际观测相符,而对于 λ = 6cm,只相当于观测值的 20%。剩余的 80%,猜想是来自过渡区辐射。

笔者使用美国甚大阵(VLA) λ =2cm, 20cm, 荷兰 Westerbork 综合孔 径(WSRT) λ =6cm(资料同前文),联邦德国 Effelsberg 100 米射电望远镜 λ =0.9cm,2.8cm 和芬兰 Metsahovi 13.7 米射电望远镜 λ =0.8cm 的同期观测资料(见图 1),得出了对应波长上两个子源的亮温度和偏振度的有效百分比(见表 1)。由此作出了它们的流量谱(见图 2 α 和 2b)。

两个子源的射电流量在 $\lambda = 6 \, \mathrm{cm} \, \Omega$,都出现了极大。对于子源 A,这并不奇怪,因为这里的不透明度最大,它是起因于回旋共振吸收。而对于子源 B的极大是完全意外的,因为它被解释为绝热的自由—自由辐射和吸收。众所周知, 射 电 天 文 学 的

表 1 1980 年 6 月 10—11 日在对应波长上两个子源的亮温度和偏振度的有效百分比

λ(cm)	6月10日				6月11日			
	子 源 A		子 源 B		子 源 A		子 源 B	
	Tb	P(%)	Тъ	P(%)	T_b	P(%)	T_{b}	P(%)
0.8	_	_	1.1×10 ⁴	-	-	_	1.1×10 ⁴	_
0.9	-	_	-	-	_	_	1.2 × 104	_
2.0			$(2.3 \pm 0.5) \times 10^4$	-4.5±2.5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u></u>	$(1.9\pm0.6) \times 10^4$	_
2.8	2.3×10 ⁴		2.9×104	-5+2.5	2.9×104	_	2.9×104	-2.5
6	(5.5±1) ×10 ^s	- 30 ± 5	$(3.5 \pm 1.5) \times 10^{5}$	+ 3 ± 1	$ \begin{array}{ c c } \hline (5.7\pm1) \\ \times 10^{5} \end{array} $	-25 ± 4	(3.5±2) ×10 ⁵	4.5±2.5
20	$(2.5\pm1.5) \times 10^{5}$	_	$(4.7 \pm 0.5) \times 10^{5}$	8.5±1.5	8 × 10 ⁵	- 6	$(4.0 \pm 0.4) \times 10^{5}$	- 5

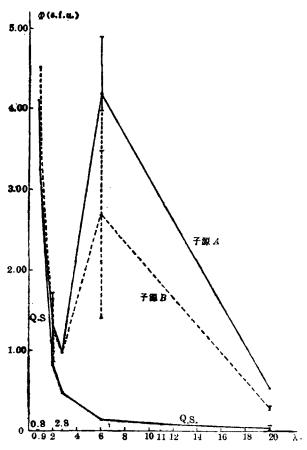


图 26. 1980 年 6 月 11 日活动区 AR2490 两个子源的射电频谱(说明同图 2a)。

Piddington 定理指出,在一个完全起因于自由-自由热的射电源中,射电流量决不会随波 长 而增加 (见 Kundu 1965 年的解释)。因此,这一结果也就指出了 6cm 处 回 旋共振在子源 B中也起着一种重要的作用,而由 X射线观测推算出子源 B的温度和辐射强度只能是观测温度 T_b 20% 的结论显然是错误的。因为回旋共振吸收系数在拉莫尔 频率 v_B = $2.8 \times 10^6 B$ (G) 的 第二和第三谐波上给出了不可忽视的贡献。

纪树臣 (中国科学院云南天文台) F.C.Drago (意大利佛罗伦萨大学)

Study of Radio Radiation on the AR2490

Ji Shuchen (Yunnan Observatory, Academia Sinica)

F.C.Drago (University of Florence, Italy)